Rapid Isolation of Viable Circulating Tumor Cells from Patient Blood Samples
نویسندگان
چکیده
Circulating tumor cells (CTC) are cells that disseminate from a primary tumor throughout the circulatory system and that can ultimately form secondary tumors at distant sites. CTC count can be used to follow disease progression based on the correlation between CTC concentration in blood and disease severity. As a treatment tool, CTC could be studied in the laboratory to develop personalized therapies. To this end, CTC isolation must cause no cellular damage, and contamination by other cell types, particularly leukocytes, must be avoided as much as possible. Many of the current techniques, including the sole FDA-approved device for CTC enumeration, destroy CTC as part of the isolation process (for more information see Ref. 2). A microfluidic device to capture viable CTC is described, consisting of a surface functionalized with E-selectin glycoprotein in addition to antibodies against epithelial markers. To enhance device performance a nanoparticle coating was applied consisting of halloysite nanotubes, an aluminosilicate nanoparticle harvested from clay. The E-selectin molecules provide a means to capture fast moving CTC that are pumped through the device, lending an advantage over alternative microfluidic devices wherein longer processing times are necessary to provide target cells with sufficient time to interact with a surface. The antibodies to epithelial targets provide CTC-specificity to the device, as well as provide a readily adjustable parameter to tune isolation. Finally, the halloysite nanotube coating allows significantly enhanced isolation compared to other techniques by helping to capture fast moving cells, providing increased surface area for protein adsorption, and repelling contaminating leukocytes. This device is produced by a straightforward technique using off-the-shelf materials, and has been successfully used to capture cancer cells from the blood of metastatic cancer patients. Captured cells are maintained for up to 15 days in culture following isolation, and these samples typically consist of >50% viable primary cancer cells from each patient. This device has been used to capture viable CTC from both diluted whole blood and buffy coat samples. Ultimately, we present a technique with functionality in a clinical setting to develop personalized cancer therapies.
منابع مشابه
Label-free Rapid Viable Enrichment of Circulating Tumor Cell by Photosensitive Polymer-based Microfilter Device
We present a clinical device for simple, rapid, and viable isolation of circulating tumor cells (CTCs) from cancer patient bloods. In spite of the clinical importance of CTCs, the lack of easy and non-biased isolation methods is a big hurdle for implementing CTC into clinical use. The present device made of photosensitive polymer was designed to attach to conventional syringe to isolate the CTC...
متن کاملUltra‐Specific Isolation of Circulating Tumor Cells Enables Rare‐Cell RNA Profiling
The clinical potential of circulating tumor cells (CTCs) in managing cancer metastasis is significant. However, low CTC isolation purities from patient blood have hindered sensitive molecular assays of these rare cells. Described herein is the ultra-pure isolation of CTCs from patient blood samples and how this platform has enabled highly specific molecular (mRNA and miRNA) profiling of patient...
متن کاملTapered-slit Membrane Filter Devices for the High-throughput Viable Isolation of Circulating Tumor Cells
We present tapered-slit filter devices for high-throughput viable circulating tumor cell (CTC) isolation and release. The membrane filter having an array of tapered-slits reduces the cell stress concentration at the edge of slit entrance, thus achieving viable CTC isolation with minimal stress. We fabricated the tapered-slit membrane from the UV exposure of spin-coated SU8 layers. The membrane ...
متن کاملFlexible micro spring array device for high-throughput enrichment of viable circulating tumor cells.
BACKGROUND The dissemination of circulating tumor cells (CTCs) that cause metastases in distant organs accounts for the majority of cancer-related deaths. CTCs have been established as a cancer biomarker of known prognostic value. The enrichment of viable CTCs for ex vivo analysis could further improve cancer diagnosis and guide treatment selection. We designed a new flexible micro spring array...
متن کاملA novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells
Circulating tumor cells (CTCs) were introduced as biomarkers more than 10 years ago, but capture of viable CTCs at high purity from peripheral blood of cancer patients is still a major technical challenge. Here, we report a novel microfluidic platform designed for marker independent capture of CTCs. The Parsortix™ cell separation system provides size and deformability-based enrichment with auto...
متن کامل